If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3h^2+11h+10=0
a = 3; b = 11; c = +10;
Δ = b2-4ac
Δ = 112-4·3·10
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-1}{2*3}=\frac{-12}{6} =-2 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+1}{2*3}=\frac{-10}{6} =-1+2/3 $
| 60+23x+5=180 | | 4(2x+8)=-42+66 | | x+64+x+55+71=180 | | x+64+x55+71=180 | | (6t+7)/(t+7)=4 | | –4w=12 | | -5=-8t | | /d2=–2 | | (3t-7)/(5t-1)=1 | | 4x+1/2=22 | | d2=–2 | | 8(x+4)-3(6x-8)=14 | | x+78+51+x+73=180 | | 17x+19x=120 | | 5(r+6)=10(r2) | | (4x−3)/2−(5−2x)/3 -(−3x−4)/3=5 | | (x(10.01)+(100-x)(11.01)/100=10.81 | | 3v^2-37v+12=0 | | (2x-20)°=(x+15)° | | 11y-6y-8=48.4 | | 7(6x-8)=48x-1 | | x+19x=120 | | x+19+7x+9=120 | | 4x-28=2x+14 | | 23/5x=23 | | 0.8(2.50t)+3=13.80 | | 10y+15y=3000 | | 4x–28=2x+14 | | w^2-14.5w+7=0 | | 3x-4+4=2x-5+5x | | -8v+11=-8v+51 | | 2w^2-29w+14=0 |